MSO undecidability for hereditary classes of unbounded clique-width
نویسندگان
چکیده
Seese’s conjecture for finite graphs states that monadic second-order logic (MSO) is undecidable on all graph classes of unbounded clique-width. We show to establish this it would suffice grids size can be interpreted in two families classes: minimal hereditary clique-width; and antichains clique-width under the induced subgraph relation. explore currently known former category indeed them.
منابع مشابه
Infinitely many minimal classes of graphs of unbounded clique-width
The celebrated theorem of Robertson and Seymour states that in the family of minor-closed graph classes, there is a unique minimal class of graphs of unbounded tree-width, namely, the class of planar graphs. In the case of tree-width, the restriction to minor-closed classes is justified by the fact that the tree-width of a graph is never smaller than the tree-width of any of its minors. This, h...
متن کاملLinear Clique-Width for Hereditary Classes of Cographs
• give all vertices labeled i the label j. ∗All three authors were partially supported by EPSRC via the grant EP/J006130/1. †Vatter’s research was also partially supported by the National Security Agency under Grant Number H98230-12-1-0207 and the National Science Foundation under Grant Number DMS-1301692. The United States Government is authorized to reproduce and distribute reprints not-withs...
متن کاملMinimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs
We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomassé from 2010 claiming that all such mi...
متن کاملMinimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering
Daligault, Rao and Thomassé proposed in 2010 a fascinating conjecture connecting two seem-ingly unrelated notions: clique-width and well-quasi-ordering. They asked if the clique-width ofgraphs in a hereditary class which is well-quasi-ordered under labelled induced subgraphs is boundedby a constant. This is equivalent to asking whether every hereditary class of unbounded clique-...
متن کاملClique-Width for Graph Classes Closed under Complementation
Clique-width is an important graph parameter due to its algorithmic and structural properties. A graph class is hereditary if it can be characterized by a (not necessarily finite) set H of forbidden induced subgraphs. We initiate a systematic study into the boundedness of clique-width of hereditary graph classes closed under complementation. First, we extend the known classification for the |H|...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2023
ISSN: ['1095-9971', '0195-6698']
DOI: https://doi.org/10.1016/j.ejc.2023.103700